资源类型

期刊论文 1012

年份

2023 51

2022 63

2021 61

2020 72

2019 77

2018 43

2017 43

2016 37

2015 52

2014 60

2013 39

2012 39

2011 46

2010 51

2009 47

2008 36

2007 42

2006 38

2005 25

2004 18

展开 ︾

关键词

技术预见 5

有限元 5

有限元法 4

神经网络 4

ANSYS 3

仿真 3

优化设计 3

海上风电场 3

裂缝 3

Inconel 718合金 2

一阶分析法 2

三维有限元 2

上限法 2

产业成熟度 2

参数估计 2

可靠性 2

多目标优化 2

悬索桥 2

数学模型 2

展开 ︾

检索范围:

排序: 展示方式:

The smoothed finite element method (S-FEM): A framework for the design of numerical models for desired

Gui-Rong Liu

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 456-477 doi: 10.1007/s11709-019-0519-5

摘要:

The smoothed finite element method (S-FEM) was originated by G R Liu by combining some meshfree techniques with the well-established standard finite element method (FEM). It has a family of models carefully designed with innovative types of smoothing domains. These models are found having a number of important and theoretically profound properties. This article first provides a concise and easy-to-follow presentation of key formulations used in the S-FEM. A number of important properties and unique features of S-FEM models are discussed in detail, including 1) theoretically proven softening effects; 2) upper-bound solutions; 3) accurate solutions and higher convergence rates; 4) insensitivity to mesh distortion; 5) Jacobian-free; 6) volumetric-locking-free; and most importantly 7) working well with triangular and tetrahedral meshes that can be automatically generated. The S-FEM is thus ideal for automation in computations and adaptive analyses, and hence has profound impact on AI-assisted modeling and simulation. Most importantly, one can now purposely design an S-FEM model to obtain solutions with special properties as wish, meaning that S-FEM offers a framework for design numerical models with desired properties. This novel concept of numerical model on-demand may drastically change the landscape of modeling and simulation. Future directions of research are also provided.

关键词: computational method     finite element method     smoothed finite element method     strain smoothing technique     smoothing domain     weakened weak form     solid mechanics     softening effect     upper bound solution    

Static analysis of corrugated panels using homogenization models and a cell-based smoothed mindlin plateelement (CS-MIN3)

Nhan NGUYEN-MINH, Nha TRAN-VAN, Thang BUI-XUAN, Trung NGUYEN-THOI

《结构与土木工程前沿(英文)》 2019年 第13卷 第2期   页码 251-272 doi: 10.1007/s11709-017-0456-0

摘要: Homogenization is a promising approach to capture the behavior of complex structures like corrugated panels. It enables us to replace high-cost shell models with stiffness-equivalent orthotropic plate alternatives. Many homogenization models for corrugated panels of different shapes have been proposed. However, there is a lack of investigations for verifying their accuracy and reliability. In addition, in the recent trend of development of smoothed finite element methods, the cell-based smoothed three-node Mindlin plate element (CS-MIN3) based on the first-order shear deformation theory (FSDT) has been proposed and successfully applied to many analyses of plate and shell structures. Thus, this paper further extends the CS-MIN3 by integrating itself with homogenization models to give homogenization methods. In these methods, the equivalent extensional, bending, and transverse shear stiffness components which constitute the equivalent orthotropic plate models are represented in explicit analytical expressions. Using the results of ANSYS and ABAQUS shell simulations as references, some numerical examples are conducted to verify the accuracy and reliability of the homogenization methods for static analyses of trapezoidally and sinusoidally corrugated panels.

关键词: homogenization     corrugated panel     asymptotic analysis     smoothed finite element method (S-FEM)     cell-based smoothed three-node Mindlin plate element (CS-MIN3)    

An extended cell-based smoothed discrete shear gap method (XCS-FEM-DSG3) for free vibration analysis

M. H. NGUYEN-THOI,L. Le-ANH,V. Ho-HUU,H. Dang-TRUNG,T. NGUYEN-THOI

《结构与土木工程前沿(英文)》 2015年 第9卷 第4期   页码 341-358 doi: 10.1007/s11709-015-0302-1

摘要: A cell-based smoothed discrete shear gap method (CS-FEM-DSG3) was recently proposed and proven to be robust for free vibration analyses of Reissner-Mindlin shell. The method improves significantly the accuracy of the solution due to softening effect of the cell-based strain smoothing technique. In addition, due to using only three-node triangular elements generated automatically, the CS-FEM-DSG3 can be applied flexibly for arbitrary complicated geometric domains. However so far, the CS-FEM-DSG3 has been only developed for analyzing intact structures without possessing internal cracks. The paper hence tries to extend the CS-FEM-DSG3 for free vibration analysis of cracked Reissner-Mindlin shells by integrating the original CS-FEM-DSG3 with discontinuous and crack−tip singular enrichment functions of the extended finite element method (XFEM) to give a so-called extended cell-based smoothed discrete shear gap method (XCS-FEM-DSG3). The accuracy and reliability of the novel XCS-FEM-DSG3 for free vibration analysis of cracked Reissner-Mindlin shells are investigated through solving three numerical examples and comparing with commercial software ANSYS.

关键词: cracked Reissner-Mindlin shell     free vibration analysis     cell-based smoothed discrete shear gap method (CS-FEM-DSG3)     extended cell-based smoothed discrete shear gap method (XCS-FEM-DSG3)     smoothed finite element methods (SFEM)    

Special Column on Multiscale Stochastic Finite Element Method

《结构与土木工程前沿(英文)》 2015年 第9卷 第2期   页码 105-106 doi: 10.1007/s11709-015-0297-7

Applying the spectral stochastic finite element method in multiple-random field RC structures

Abbas YAZDANI

《结构与土木工程前沿(英文)》 2022年 第16卷 第4期   页码 434-447 doi: 10.1007/s11709-022-0820-6

摘要: This paper uses the spectral stochastic finite element method (SSFEM) for analyzing reinforced concrete (RC) beam/slab problems. In doing so, it presents a new framework to study how the correlation length of a random field (RF) with uncertain parameters will affect modeling uncertainties and reliability evaluations. It considers: 1) different correlation lengths for uncertainty parameters, and 2) dead and live loads as well as the elasticity moduli of concrete and steel as a multi-dimensional RF in concrete structures. To show the SSFEM’s efficiency in the study of concrete structures and to evaluate the sensitivity of the correlation length effects in evaluating the reliability, two examples of RC beams and slabs have been investigated. According to the results, the RF correlation length is effective in modeling uncertainties and evaluating reliabilities; the longer the correlation length, the greater the dispersion range of the structure response and the higher the failure probability.

关键词: uncertainty     spectral stochastic finite element method     correlation length     reliability assessment     reinforced concrete beam/slab    

Multiscale stochastic finite element method on random field modeling of geotechnical problems – a fast

Xi F. XU

《结构与土木工程前沿(英文)》 2015年 第9卷 第2期   页码 107-113 doi: 10.1007/s11709-014-0268-4

摘要: The Green-function-based multiscale stochastic finite element method (MSFEM) has been formulated based on the stochastic variational principle. In this study a fast computing procedure based on the MSFEM is developed to solve random field geotechnical problems with a typical coefficient of variance less than 1. A unique fast computing advantage of the procedure enables computation performed only on those locations of interest, therefore saving a lot of computation. The numerical example on soil settlement shows that the procedure achieves significant computing efficiency compared with Monte Carlo method.

关键词: multiscale     finite element     settlement     perturbation     random field     geotechnical    

Slope stability analysis based on a multigrid method using a nonlinear 3D finite element model

Yaoru LIU, Zhu HE, Bo LI, Qiang YANG

《结构与土木工程前沿(英文)》 2013年 第7卷 第1期   页码 24-31 doi: 10.1007/s11709-013-0190-1

摘要: The rigid-body limit equilibrium method cannot reflect the actual stress distribution in a rock mass, and the finite-element-based strength reduction method also has some problems with respect to convergence. To address these problems, a multi-grid method was adopted in this study to establish a structural grid for finite element computation and a slip surface grid for computing slope stability safety factors. This method can be used to determine the stability safety factor for any slip surface or slide block through a combination of nonlinear finite element analysis and limit equilibrium analysis. An ideal elastic–plastic incremental analysis method based on the Drucker–Prager yield criterion was adopted in the nonlinear finite element computation. Elasto-plastic computation achieves good convergence for both small load steps and large load steps and can increase computation precision to a certain extent. To increase the scale and accuracy of the computation, TFINE, a finite element parallel computation program, was used to analyze the influence of grid density on the accuracy of the computation results and was then applied to analysis of the stability of the Jinping high slope. A comparison of the results with results obtained using the rigid-body limit equilibrium method showed that the slope stability safety factors determined using finite element analysis were greater than those obtained using the rigid-body limit equilibrium method and were in better agreement with actual values because nonlinear stress adjustment was considered in the calculation.

关键词: slope     stability     multi-grid method     nonlinear     finite element method    

3D finite element method (FEM) simulation of groundwater flow during backward erosion piping

Kristine VANDENBOER,Vera van BEEK,Adam BEZUIJEN

《结构与土木工程前沿(英文)》 2014年 第8卷 第2期   页码 160-166 doi: 10.1007/s11709-014-0257-7

摘要: Backward erosion piping is an important failure mechanism for cohesive water retaining structures which are founded on a sandy aquifer. At present, the prediction models for safety assessment are often based on 2D assumptions. In this work, a 3D numerical approach of the groundwater flow leading to the erosion mechanism of backward erosion piping is presented and discussed. Comparison of the 2D and 3D numerical results explicitly demonstrates the inherent 3D nature of the piping phenomenon. In addition, the influence of the seepage length is investigated and discussed for both piping initiation and piping progression. The results clearly indicate the superiority of the presented 3D numerical model compared to the established 2D approach. Moreover, the 3D numerical results enable a better understanding of the complex physical mechanism involved in backward erosion piping and thus can lead to a significant improvement in the safety assessment of water retaining structures.

关键词: backward erosion piping     groundwater flow     3D finite element method (FEM)    

Comparison of indirect boundary element and finite element methods A case study: Shiraz-Esfahan railway

Amin MANOUCHEHRIAN, Mohammad Fatehi MARJI, Mohsen MOHEBBI

《结构与土木工程前沿(英文)》 2012年 第6卷 第4期   页码 385-392 doi: 10.1007/s11709-012-0173-7

摘要: Because of the high importance of transportation tunnels, most precise analyses of stress concentration and displacement around them are essential to provide safety of them as much as possible. Recently, various numerical methods such as finite element method (FEM), discrete element method (DEM), finite difference method (FDM) and boundary element method (BEM) have been used extremely in geosciences problems, but among these numerical methods, BEM has been used less than others because the computational algorithm is not so straightforward. This paper suggests the implementation of the indirect boundary element method (IBEM) as a formulation of BEM to analyze displacement around Shiraz-Esfahan railway tunnel in Zagros Mountains southwest of Iran. For this purpose, this tunnel has been modeled numerically using two-dimensional fictitious stress method (TWOFS) algorithm. To validate the results, they were compared with FEM results as a commonly used numerical method. Results of current theoretical study have shown that the presented approach using IBEM is reasonably accurate and can be used for analysis of displacement in geosciences problems. In rock mechanics, for problems with a low ratio of boundary surface to volume, FEM is not very well suited and may be cumbersome, but use of such a proposed IBEM approach can be particularly attractive.

关键词: indirect boundary element method     finite element method     displacement     tunnel     case study    

Ambient vibration testing and updating of the finite element model of a simply supported beam bridge

Ivan Gomez ARAUJO, Esperanza MALDONADO, Gustavo Chio CHO

《结构与土木工程前沿(英文)》 2011年 第5卷 第3期   页码 344-354 doi: 10.1007/s11709-011-0124-8

摘要: An ambient vibration test on a concrete bridge constructed in 1971 and calibration of its finite element model are presented. The bridge is characterized by a system of post-tensioned and simply supported beams. The dynamic characteristics of the bridge, i.e. natural frequencies, mode shapes and damping ratios were computed from the ambient vibration tests by using the Eigensystem Realization Algorithm (ERA). Then, these characteristics were used to update the finite element model of the bridge by formulating an optimization problem and then using Genetic Algorithms (GA) to solve it. From the results of the ambient vibration test of this type of bridge, it is concluded that two-dimensional mode shapes exist: in the longitudinal and transverse; and these experimentally obtained dynamic characteristics were also achieved in the analytical model through updating. The application of GAs as optimization techniques showed great versatility to optimize any number and type of variables in the model.

关键词: modal analysis     parameter identification     ambient vibration test     Eigensystem Realization Algorithm (ERA) method     finite element method    

Acoustic analysis of lightweight auto-body based on finite element method and boundary element method

LIANG Xinhua, ZHU Ping, LIN Zhongqin, ZHANG Yan

《机械工程前沿(英文)》 2007年 第2卷 第1期   页码 99-103 doi: 10.1007/s11465-007-0017-7

摘要: A lightweight automotive prototype using alternative materials and gauge thickness is studied by a numerical method. The noise, vibration, and harshness (NVH) performance is the main target of this study. In the range of 1 150 Hz, the frequency response function (FRF) of the body structure is calculated by a finite element method (FEM) to get the dynamic behavior of the auto-body structure. The pressure response of the interior acoustic domain is solved by a boundary element method (BEM). To find the most contributing panel to the inner sound pressure, the panel acoustic contribution analysis (PACA) is performed. Finally, the most contributing panel is located and the resulting structural optimization is found to be more efficient.

关键词: harshness     automotive prototype     structural optimization     vibration     efficient    

An investigation of ballistic response of reinforced and sandwich concrete panels using computational techniques

Mohammad HANIFEHZADEH, Bora GENCTURK

《结构与土木工程前沿(英文)》 2019年 第13卷 第5期   页码 1120-1137 doi: 10.1007/s11709-019-0540-8

摘要: Structural performance of nuclear containment structures and power plant facilities is of critical importance for public safety. The performance of concrete in a high-speed hard projectile impact is a complex problem due to a combination of multiple failure modes including brittle tensile fracture, crushing, and spalling. In this study, reinforced concrete (RC) and steel-concrete-steel sandwich (SCSS) panels are investigated under high-speed hard projectile inpact. Two modeling techniques, smoothed particle hydrodynamics (SPH) and conventional finite element (FE) analysis with element erosion are used. Penetration depth and global deformation are compared between doubly RC and SCSS panels in order to identify the advantages of the presence of steel plates over the reinforcement layers. A parametric analysis of the front and rear plate thicknesses of the SCSS configuration showed that the SCSS panel with a thick front plate has the best performance in controlling the hard projectile. While a thick rear plate is effective in the case of a large and soft projectile as the plate reduces the rear deformation. The effects of the impact angle and impact velocity are also considered. It was observed that the impact angle for the flat nose missile is critical and the front steel plate is effective in minimizing penetration depth.

关键词: concrete panels     projectile impact     finite element modeling     smoothed particle hydrodynamics     strain rate effect    

Finite element analysis of controlled low strength materials

Vahid ALIZADEH

《结构与土木工程前沿(英文)》 2019年 第13卷 第5期   页码 1243-1250 doi: 10.1007/s11709-019-0553-3

摘要: Controlled low strength materials (CLSM) are flowable and self-compacting construction materials that have been used in a wide variety of applications. This paper describes the numerical modeling of CLSM fills with finite element method under compression loading and the bond performance of CLSM and steel rebar under pullout loading. The study was conducted using a plastic-damage model which captures the material behavior using both classical theory of elasto-plasticity and continuum damage mechanics. The capability of the finite element approach for the analysis of CLSM fills was assessed by a comparison with the experimental results from a laboratory compression test on CLSM cylinders and pullout tests. The analysis shows that the behavior of a CLSM fill while subject to a failure compression load or pullout tension load can be simulated in a reasonably accurate manner.

关键词: CLSM     finite element method     compressive strength     pullout     numerical modeling     plastic damage model    

Thermal buckling behavior of laminated composite plates: a finite-element study

Houdayfa OUNIS,Abdelouahab TATI,Adel BENCHABANE

《机械工程前沿(英文)》 2014年 第9卷 第1期   页码 41-49 doi: 10.1007/s11465-014-0284-z

摘要:

In this paper, the thermal buckling behavior of composite laminated plates under a uniform temperature distribution is studied. A finite element of four nodes and 32 degrees of freedom (DOF), previously developed for the bending and mechanical buckling of laminated composite plates, is extended to investigate the thermal buckling behavior of laminated composite plates. Based upon the classical plate theory, the present finite element is a combination of a linear isoparametric membrane element and a high precision rectangular Hermitian element. The numerical implementation of the present finite element allowed the comparison of the numerical obtained results with results obtained from the literature: 1) with element of the same order, 2) the first order shear deformation theory, 3) the high order shear deformation theory and 4) the three-dimensional solution. It was found that the obtained results were very close to the reference results and the proposed element offers a good convergence speed. Furthermore, a parametrical study was also conducted to investigate the effect of the anisotropy of composite materials on the critical buckling temperature of laminated plates. The study showed that: 1) the critical buckling temperature generally decreases with the increasing of the modulus ratio EL/ET and thermal expansion ratio αT/αL, and 2) the boundary conditions and the orientation angles significantly affect the critical buckling temperature of laminated plates.

关键词: thermal buckling     laminated composite plates     anisotropy     critical buckling temperature     finite-element method     high precision rectangular Hermitian element    

Ribbed strip rolling by three-dimensional finite element method combining extremely thin array of elements

Zhengyi JIANG,

《机械工程前沿(英文)》 2010年 第5卷 第1期   页码 52-60 doi: 10.1007/s11465-009-0087-9

摘要: In this paper, a three-dimensional finite element modelling of the ribbed strip rolling is carried out, coupling the use of an extremely thin array of elements that is equivalent to the calculation of the additional shear deformation work rate occurred by the velocity discontinuity in the roll bite. The formulation of the finite element modelling by adding a rib inclined contact surface boundary condition is derived, and the performance of the proposed method is conducted. The simulated rib height, forward slip, and the pulling down of rib height have been compared with the measured values and are in good agreement. The equivalent strain rate of the rib was obtained in the simulation. The effect of the rib inclined angle on pulling down of rib height has also been discussed, which is helpful in optimizing the design of the rib inclined angle.

关键词: rib inclined contact boundary condition     ribbed strip     extremely thin elements     pulling down of rib height     finite element modelling    

标题 作者 时间 类型 操作

The smoothed finite element method (S-FEM): A framework for the design of numerical models for desired

Gui-Rong Liu

期刊论文

Static analysis of corrugated panels using homogenization models and a cell-based smoothed mindlin plateelement (CS-MIN3)

Nhan NGUYEN-MINH, Nha TRAN-VAN, Thang BUI-XUAN, Trung NGUYEN-THOI

期刊论文

An extended cell-based smoothed discrete shear gap method (XCS-FEM-DSG3) for free vibration analysis

M. H. NGUYEN-THOI,L. Le-ANH,V. Ho-HUU,H. Dang-TRUNG,T. NGUYEN-THOI

期刊论文

Special Column on Multiscale Stochastic Finite Element Method

期刊论文

Applying the spectral stochastic finite element method in multiple-random field RC structures

Abbas YAZDANI

期刊论文

Multiscale stochastic finite element method on random field modeling of geotechnical problems – a fast

Xi F. XU

期刊论文

Slope stability analysis based on a multigrid method using a nonlinear 3D finite element model

Yaoru LIU, Zhu HE, Bo LI, Qiang YANG

期刊论文

3D finite element method (FEM) simulation of groundwater flow during backward erosion piping

Kristine VANDENBOER,Vera van BEEK,Adam BEZUIJEN

期刊论文

Comparison of indirect boundary element and finite element methods A case study: Shiraz-Esfahan railway

Amin MANOUCHEHRIAN, Mohammad Fatehi MARJI, Mohsen MOHEBBI

期刊论文

Ambient vibration testing and updating of the finite element model of a simply supported beam bridge

Ivan Gomez ARAUJO, Esperanza MALDONADO, Gustavo Chio CHO

期刊论文

Acoustic analysis of lightweight auto-body based on finite element method and boundary element method

LIANG Xinhua, ZHU Ping, LIN Zhongqin, ZHANG Yan

期刊论文

An investigation of ballistic response of reinforced and sandwich concrete panels using computational techniques

Mohammad HANIFEHZADEH, Bora GENCTURK

期刊论文

Finite element analysis of controlled low strength materials

Vahid ALIZADEH

期刊论文

Thermal buckling behavior of laminated composite plates: a finite-element study

Houdayfa OUNIS,Abdelouahab TATI,Adel BENCHABANE

期刊论文

Ribbed strip rolling by three-dimensional finite element method combining extremely thin array of elements

Zhengyi JIANG,

期刊论文